Ar

The effect of oxygen admixture on the properties of microwave generated plasma in Ar-O₂ : a modelling study - dataset

This work presents the datasets of the results of a self-consistent modelling analysis on microwave plasma generated in Ar-O₂ mixtures at a frequency of 2.45 GHz at atmospheric pressure. The study focuses on how the plasma properties are in uenced by the increase of the oxygen fraction in the gas mixture. The oxygen admixture is increased from 1 up to 95 % in mass for values of the input microwave power of 1 and 1.5 kW.

Ar metastable densities (³P₂) in the effluent of a filamentary atmospheric pressure plasma jet with humidified feed gas - dataset

The Ar(³P₂) metastable density in the effluent of the cold atmospheric pressure plasma jet kINPen-sci was investigated as a function of the feed gas humidity, the gas curtain composition, and the distance from the nozzle by means of laser atomic absorption spectroscopy. The data set comprises the axial distributions of the Ar metastables as a function of these parameters.

Influence of surface parameters on dielectric-barrier discharges in argon at subatmospheric pressure - dataset

The provided data describe the discharge current in DBD obtained by fluid modelling using different values of for the secondary electron emission coefficient γ and and the relative permittivity of the dielectric barrier εr in comparison with the measured current at a pressure of 100 mbar and an applied voltage amplitude of 1.8 kV. Furthermore, the dissipated power obtained by model calculations for different values of γ and εr together with the measured power in dependence on the pressure is given.

Electrical characteristics of atmospheric-pressure DBD in argon with small admixtures of TMS - measured and calculated data

A time-dependent, spatially one-dimensional fluid-Poisson model has been applied to analyse the impact of small amounts of tetramethylsilane (TMS) on the discharge characteristics of an atmospheric-pressure dielectric barrier discharge (DBD) in argon. Based on an established argon kinetics, it includes a reaction kinetics for TMS, which has been validated by measurements of the ignition voltage at the frequency f = 86.2 kHz for TMS amounts of up to 200 ppm.

Unified modelling of low-current short-length arcs between copper electrodes

In this work we present for the first time a unified model of a low-current short-length arc between copper electrodes. The model employs one-dimensional fluid description of the plasma in argon and copper vapour at atmospheric pressure and the heat transfer in the electrodes made of copper. The solution of the particle and energy conservation of electrons and heavy particles is coupled with the solution of the Poisson equation, from which the self-consistent electric field is obtained. The operation of the non-refractory cathode is based on thermo-field emission.

On the relationship between SiF4 plasma species and sample properties in ultra low-k etching processes

The temporal behavior of the molecular etching product SiF4 in fluorocarbon-based plasmas used for the dry etching of ultra low-k (ULK) materials has been brought into connection with the polymer deposition on the surface during plasma treatment within the scope of this work. For this purpose, the density of SiF4 has been measured time-resolved using quantum cascade laser absorption spectroscopy (QCLAS).

Plasma parameters of microarcs towards minuscule discharge gap - Dataset

This dataset contains plasma parameters of microarcs generated between a cooled copper anode and a ceriated tungsten cathode by means of a one-dimensional unified non-equilibrium model for gap lengths between 15 and 200 µm and current densities from 2x10^5 up to 10^6 A/m^2. The data show that the decrease of the gap length down to a few tens of micrometers for a given current density results in a progressive shrinking of the quasineutral bulk in the microplasma and its complete disappearance.