Gerling, Torsten

Safety and efficiency evaluation of an innovative plasma jet array in argon by gas switching technology

Wound healing is an important and still challenging task in modern medicine. In particular, the therapeutic options of treating chronic wounds linked to diseases like diabetes are limited. One promising approach is the application of cold atmospheric plasma (CAP) via medical plasma jets or dielectric barrier discharges to specifically stimulate the healing process of non-healing wounds. However, limitations occur regarding the treatment area in case of plasma jets.

Discharge modes of self-pulsing discharges in argon at atmospheric pressure - dataset

The results of modelling study of self-pulsing discharges in pure argon at atmospheric pressure in a 1.5 mm gas gap are provided in this dataset. The study investigates the interaction between the electrical circuit and the actual plasma characteristics. A time-dependent, spatially one-dimensional fluid-Poisson model coupled with an equivalent circuit equation is applied to analyse the impact of circuit parameters like resistance and applied negative DC high voltage on basic discharge properties.

System and method for operating a plasma jet configuration (MultiJet)

The invention relates to a system (1) for generating and controlling a non-thermal atmospheric pressure plasma, comprising: - a discharge space (10) into which a working gas can be introduced via a first opening (12), wherein a plasma (5) can be generated in the discharge space (10), wherein the discharge space (10) has a second opening (14), so that the plasma (5, 6) can exit from the discharge space (10) through this second opening (14) and - at least one high-voltage electrode (20) for generating an electromagnetic field for generating a plasma (5) in the discharge space (10).