AC

Impact of the electrode proximity on the streamer breakdown and development of pulsed dielectric barrier discharges - Dataset

Presented data was obtained from the analysis of the impact of the electrode proximity on the streamer breakdown and development of pulsed-driven dielectric barrier discharges (DBDs) in a singlefilament arrangement in a gas mixture of 0.1 vol% O2 in N2 at 0.6 bar and 1.0 bar. The gap distance was varied from 0.5 mm to 1.5 mm, and the applied voltage was adapted correspondingly to create comparable breakdown conditions in the gap. Fast electrical measurements provided insight into discharge characteristics such as the transferred charge and consumed energy.

AURA-WAVE (Sairem)

AURA-WAVE is an Electron Cyclotron Resonance (ECR) coaxial plasma source. It has been designed to be self-adapted once the plasma ignited. A magnetic field combined to the electromagnetic wave allows the creation of plasma at low pressure due to Electron Cyclotron Resonance. AURA-WAVE microwave plasma source has been designed to sustain microwave plasma over several decades of pressure, i.e. from 10⁻⁴ mbar to a few 10⁻² mbar and from a few watts depending on the gas.

Evidence of the Dominant Production Mechanism of Ammonia in a Hydrogen Plasma with Parts Per Million of Nitrogen - Dataset

Absolute ground state atomic hydrogen densities were measured, by utilisation of two-photon absorption laser induced fluorescence (TALIF), in a low pressure electron cyclotron resonance plasma as a function of nitrogen admixtures - 0 to 5000 ppm. At nitrogen admixtures of 1500 ppm and higher the spectral distribution of the fluorescence changes from a single Gaussian to a double Gaussian distribution; this is due to a separate, nascent, contribution arising from the photolysis of an ammonia molecule.

Spatial distribution of HO₂ in an atmospheric pressure plasma jet investigated by cavity ring-down spectroscopy - dataset

The data set comprises full cavity ring-down spectra and absorption coefficients obtained from on-off-resonance measurements, in order to determine the spatial distribution of HO₂ in the cold atmospheric pressure plasma jet kINPen-sci. Therefore, the plasma jet was operated with 3 slm Ar and 3000 ppm water, and was equipped with a gas curtain of 5 slm O₂. To determine the effective absorption length, the HO₂ absorption was measured in radial direction. These radial fits had a Gaussian-like shape.

The effect of oxygen admixture on the properties of microwave generated plasma in Ar-O₂ : a modelling study - dataset

This work presents the datasets of the results of a self-consistent modelling analysis on microwave plasma generated in Ar-O₂ mixtures at a frequency of 2.45 GHz at atmospheric pressure. The study focuses on how the plasma properties are in uenced by the increase of the oxygen fraction in the gas mixture. The oxygen admixture is increased from 1 up to 95 % in mass for values of the input microwave power of 1 and 1.5 kW.

Ion Wind DBD

The Ion Wind DBD uses a flat plasma electrode to create a surface dielectric barrier discharge (DBD) in the room air flowing over it. An additional “extraction” electrode is arranged in parallel to form a rectangular ventilation duct. The extraction electrode is charged, so that an additional unipolar electric field through the ventilation duct is created. This drags the ions of one polarity (either positive or negative) generated by the surface DBD in the direction of the extraction electrode.

Venturi-DBD (VDBD)

The gas pressure is an effective parameter to control plasma-chemical reactions, but its adjustment often requires substantial effort. In the Venturi-DBD (VDBD), the pressure can be set to any value between 100 mbar and 1000 mbar reliably and reproducibly. Using a Venturi pump for vacuum generation ensures that the system is affordable and almost maintenance-free. With air as process gas, the output gas composition can seamlessly be adjusted from a strongly ozone-dominated regime to a nitrogen oxides-only-regime including nitric oxide.

kINPen® IND

Plasma as a cross-sectional technology in many industry branches, but also in research laboratories, is an indispensable tool in surface treatment. Plasma technology is used everywhere where quality, productivity, environmental sustainability, precision and flexibility is important. Surfaces are cleaned, activated and decontaminated at atmospheric pressure with the handy kINPen® IND. The device is particularly used for surface treatment of temperature-sensitive materials as, for instance, plastics.

MiniMIP

Due to its high degree of flexibility, the microwave plasma source MiniMIP is suitable for various different applications and experiments. The plasma can be ignited in both pure argon and pure helium, and furthermore, an admixture of molecular gases to can be used to provide an optimal matching of the process chemistry to the requirements of the specific application.