atmospheric pressure

System and method for operating a plasma jet configuration (MultiJet)

The invention relates to a system (1) for generating and controlling a non-thermal atmospheric pressure plasma, comprising: - a discharge space (10) into which a working gas can be introduced via a first opening (12), wherein a plasma (5) can be generated in the discharge space (10), wherein the discharge space (10) has a second opening (14), so that the plasma (5, 6) can exit from the discharge space (10) through this second opening (14) and - at least one high-voltage electrode (20) for generating an electromagnetic field for generating a plasma (5) in the discharge space (10).

The effect of oxygen admixture on the properties of microwave generated plasma in Ar-O₂ : a modelling study - dataset

This work presents the datasets of the results of a self-consistent modelling analysis on microwave plasma generated in Ar-O₂ mixtures at a frequency of 2.45 GHz at atmospheric pressure. The study focuses on how the plasma properties are in uenced by the increase of the oxygen fraction in the gas mixture. The oxygen admixture is increased from 1 up to 95 % in mass for values of the input microwave power of 1 and 1.5 kW.

Ion Wind DBD

The Ion Wind DBD uses a flat plasma electrode to create a surface dielectric barrier discharge (DBD) in the room air flowing over it. An additional “extraction” electrode is arranged in parallel to form a rectangular ventilation duct. The extraction electrode is charged, so that an additional unipolar electric field through the ventilation duct is created. This drags the ions of one polarity (either positive or negative) generated by the surface DBD in the direction of the extraction electrode.

Venturi-DBD (VDBD)

The gas pressure is an effective parameter to control plasma-chemical reactions, but its adjustment often requires substantial effort. In the Venturi-DBD (VDBD), the pressure can be set to any value between 100 mbar and 1000 mbar reliably and reproducibly. Using a Venturi pump for vacuum generation ensures that the system is affordable and almost maintenance-free. With air as process gas, the output gas composition can seamlessly be adjusted from a strongly ozone-dominated regime to a nitrogen oxides-only-regime including nitric oxide.

Hairline plasma jet (hairlINePlasma)

The hairline plasma jet (hairlINePlasma) is a cold atmospheric pressure plasma source mainly for biological and medical applications. hairlINePlasma uses the physical effect of negative dc corona discharges and produces a nanosecond self-pulsed microplasma with a very thin plasma filament. The Plasma filament has a diameter of about 30 µm and a length of up to 3 cm. Due to this geometrical features, hairlINePlasma is particularly suitable for the treatment of microscopic cavities and the localized functionalization of conductive surfaces.

kINPen® IND

Plasma as a cross-sectional technology in many industry branches, but also in research laboratories, is an indispensable tool in surface treatment. Plasma technology is used everywhere where quality, productivity, environmental sustainability, precision and flexibility is important. Surfaces are cleaned, activated and decontaminated at atmospheric pressure with the handy kINPen® IND. The device is particularly used for surface treatment of temperature-sensitive materials as, for instance, plastics.

MiniMIP

Due to its high degree of flexibility, the microwave plasma source MiniMIP is suitable for various different applications and experiments. The plasma can be ignited in both pure argon and pure helium, and furthermore, an admixture of molecular gases to can be used to provide an optimal matching of the process chemistry to the requirements of the specific application.

Non-thermal atmospheric pressure plasma jet (ntAPPJ)

The non-thermal atmospheric pressure plasma jet (ntAPPJ) is composed of a quartz capillary with an inner diameter of 4 mm and an outer diameter of 6 mm. The plasma jet operates at a high frequency of 27.12 MHz in pure noble gases (helium, neon, argon, krypton) at flow rates between 0.1 and 2 slm. Small molecular gas admixtures or organic vapors can be added to the carrier gas. Two outer ring electrodes (width 5 mm, distance 5 mm) are adjusted concentrically with the capillary axis.

HelixJet

The HelixJet is a capacitively coupled radio-frequency (RF) plasma source operating at atmospheric pressure. The RF power is applied to two double helix electrodes. The electrodes are placed outside a quartz tube fed by the working gas. The HelixJet has unique features highly relevant for practical applications. The innovative double helix electrode design enables extremely stable and homogeneous plasma conditions at low gas flow rates. This plays a crucial role for the quality and reproducibility of several applications, e.g.

Miniaturized Noble Gas Plasma Jet

The Miniaturized Noble Gas Plasma Jet has originally been designed to be inserted into the working channel of a conventional endoscope. It has a tube-like character, is flexible, very thin and generates a biologically active jet plasma at the gas outlet. The device consists of an inner plastic tube, a ceramic nozzle, an outer plastic tube and a metal wire. The inner plastic tube is plugged upon the thin end of the ceramic nozzle.