non-thermal

Hairline plasma jet (hairlINePlasma)

The hairline plasma jet (hairlINePlasma) is a cold atmospheric pressure plasma source mainly for biological and medical applications. hairlINePlasma uses the physical effect of negative dc corona discharges and produces a nanosecond self-pulsed microplasma with a very thin plasma filament. The Plasma filament has a diameter of about 30 µm and a length of up to 3 cm. Due to this geometrical features, hairlINePlasma is particularly suitable for the treatment of microscopic cavities and the localized functionalization of conductive surfaces.

kINPen® IND

Plasma as a cross-sectional technology in many industry branches, but also in research laboratories, is an indispensable tool in surface treatment. Plasma technology is used everywhere where quality, productivity, environmental sustainability, precision and flexibility is important. Surfaces are cleaned, activated and decontaminated at atmospheric pressure with the handy kINPen® IND. The device is particularly used for surface treatment of temperature-sensitive materials as, for instance, plastics.

Non-thermal atmospheric pressure plasma jet (ntAPPJ)

The non-thermal atmospheric pressure plasma jet (ntAPPJ) is composed of a quartz capillary with an inner diameter of 4 mm and an outer diameter of 6 mm. The plasma jet operates at a high frequency of 27.12 MHz in pure noble gases (helium, neon, argon, krypton) at flow rates between 0.1 and 2 slm. Small molecular gas admixtures or organic vapors can be added to the carrier gas. Two outer ring electrodes (width 5 mm, distance 5 mm) are adjusted concentrically with the capillary axis.

HelixJet

The HelixJet is a capacitively coupled radio-frequency (RF) plasma source operating at atmospheric pressure. The RF power is applied to two double helix electrodes. The electrodes are placed outside a quartz tube fed by the working gas. The HelixJet has unique features highly relevant for practical applications. The innovative double helix electrode design enables extremely stable and homogeneous plasma conditions at low gas flow rates. This plays a crucial role for the quality and reproducibility of several applications, e.g.

Miniaturized Noble Gas Plasma Jet

The Miniaturized Noble Gas Plasma Jet has originally been designed to be inserted into the working channel of a conventional endoscope. It has a tube-like character, is flexible, very thin and generates a biologically active jet plasma at the gas outlet. The device consists of an inner plastic tube, a ceramic nozzle, an outer plastic tube and a metal wire. The inner plastic tube is plugged upon the thin end of the ceramic nozzle.

Portable, toolless mountable plasma treatment system (kINPen® MED mobile pocket)

Portable plasma treatment system (1) for generating an anisothermal plasma for use on humans, comprising the components: a) a compressed gas cylinder (10) with a valve (11), the compressed gas cylinder (10) having a usable volume of no more than five liters, b) a hand-held device (20) with a plasma nozzle (21), the hand-held device (20) being designed and provided to generate the anisothermal plasma, c) a control unit (30) which is designed to regulate a gas flow flowing out of the compressed gas cylinder (20) and/or an electrode voltage in the hand-held device (20) so that the plasma can b

Device, system, and method for antimicrobial treatment, method for producing the device, and computer program (Laparoscope)

The invention relates to a device, to a system, and to a method for antimicrobial treatment during performance of operations in bodies, to a method for producing the device, and to a computer program. A device (11) is provided for antimicrobial treatment during performance of operations, in particular minimally invasive operations, in bodies. Said device comprises a main body (1) for partial introduction into a body and at least one plasma source (12) arranged in at least one portion of the main body (1).

Plasma generating device, plasma generating system and method of generating plasma

A device for generating plasma (1) comprises a high voltage electrode (10) as well as at least one external electrode (11, 12), wherein the high voltage electrode (10) at least in one coordinate direction (34) is arranged between conductive material of at least one external electrode (11, 12). The high voltage electrode (10) is covered with a dielectric (21) at least one side facing an external electrode (11, 12).

Plasma generating device, plasma generating system, method of generating plasma and method for disinfecting surfaces

The present invention relates to a plasma generating device which comprises an electrode carrier (5) and a first electrode (10) as well as a second electrode (20), the first electrode (10) being arranged on or in the electrode carrier (5).

Device for biologically decontaminating percutaneous access points and method therefor

Disclosed is a device (1) for biologically decontaminating percutaneous access points or the stomata of patients, by means of a plasma generator (4) for generating a decontaminating plasma adjacently to a treatment surface (3) of the plasma generator (4). In order to at least partially surround a percutaneous access point or stomata, the treatment surface (3) is curved to be adaptable and can be laid against the percutaneous access point or stomata.